| A major | r source of energy is the combustion of fossil fuels. | | |----------------|--|----| | (a) (i) | Name a solid fossil fuel. | | | | [| 1] | | (ii) | Name a gaseous fossil fuel. | | | | | 1] | | (b) Pet | troleum is separated into more useful fractions by fractional distillation. | | | | | | | (i) | Name two liquid fuels obtained from petroleum. | | | | and [| 2] | | (ii) | Name two other useful products obtained from petroleum that are not used a fuels. | S | | | and [| 2] | | (iii) | Give another mixture of liquids that is separated on an industrial scale by fractional distillation. | al | | | [| 1] | | | | - | | | [Total: 7 | 7] | | | | | 1 2 A list of techniques used to separate mixtures is given below. | fractional
distillation | simple
distillation | crystallization | filtration | diffusion | |----------------------------|------------------------|-----------------------|------------------|------------| | From the list choo | se the most suitable | technique to separate | e the following. | | | water from aqueo | ous copper(II) sulphat | te | | | | helium from a mix | xture of helium and a | rgon | | | | copper(II) sulpha | te from aqueous cop | per(II) sulphate | | | | ethanol from aque | eous ethanol | | | | | barium sulphate f | from a mixture of wate | er and barium sulpha | te | [5] | | | | | | [Total: 5] | | | | | | [Total. 0] | | | | 1 | 3 | 7 | 10 | 13 | | |-----|--|---------|---------|---------|----------|--------------------------------|---------------| | | The solutions all have the | same | conce | ntratio | n. | | | | | solution | | | | рН | | | | | aqueous ammonia, a weak | base | | | | | | | | dilute hydrochloric acid, a s | strong | acid | | | | | | | aqueous sodium hydroxide | , a str | ong ba | ase | | | | | | aqueous sodium chloride, | a salt | | | | | [6. | | | dilute ethanoic acid, a wea | k acid | | | | | [5] | | (b) | Explain why solutions of h mol/dm³, have a different | | chloric | acid a | and etha | anoic acid with the same conce | entration, in | (c) | Measuring pH is one way
Describe another method. | | tinguis | hing b | etween | a strong acid and a weak acid | | | | method | | | | | | | | | | | | | | | | | | results | [2] | | | | | | | | | [Total: 9] | | | | | | | | | | (a) Match the following pH values to the solutions given below. 3 4 In 1985 the fullerenes were discovered. They are solid forms of the element carbon. The structure of the C_{60} fullerene is given below. | (a) | (i) | In the C_{60} fullerene, how many other carbon atoms is each carbon atom bonded to? | |-----|------------|---| | | (ii) | Another fullerene has a relative molecular mass of 840. How many carbon atoms are there in one molecule of this fullerene? [1] | | (b) | are
Des | lerenes are soluble in liquid hydrocarbons such as octane. The other solid forms of carbon insoluble. scribe how you could obtain crystals of fullerenes from soot which is a mixture of fullerenes of the solid forms of carbon. | | | | [3] | | (c) | Αm | nixture of a fullerene and potassium is an excellent conductor of electricity. | | | (i) | Which other form of solid carbon is a good conductor of electricity? [1] | | | (ii) | Explain why metals, such as potassium, are good conductors of electricity. | | | (iii) | The mixture of fullerene and potassium has to be stored out of contact with air. There are substances in unpolluted air which will react with potassium. Name two potassium compounds which could be formed when potassium is exposed to air. | | | | [2] | 5 The ester linkage showing all the bonds is drawn as or more simply it can be written as -COO-. (a) (i) Give the structural formula of the ester ethyl ethanoate. (ii) Deduce the name of the ester formed from methanoic acid and butanol. [1] (b) (i) Which group of naturally occurring compounds contains the ester linkage? [1] (ii) Draw the structural formula of the polyester formed from the following monomers. HOOCC₆H₄COOH and HOCH₂CH₂OH You are advised to use the simpler form of the ester linkage. **(c)** Esters can be used as solvents in chromatography. The following shows a chromatogram of plant acids. An ester was used as the solvent and the chromatogram was sprayed with bromothymol blue. | (i) | Suggest why it was necessary to spray the chromatogram. | |------|---| | | | | | [2] | | (ii) | Explain what is meant by the $R_{\rm f}$ value of a sample. | | | | | | [1] | (iii) Calculate the $R_{\rm f}$ values of the two samples and use the data in the table to identify the plant acids. | plant acid | $R_{\rm f}$ value | |---------------|-------------------| | tartaric acid | 0.22 | | citric acid | 0.30 | | oxalic acid | 0.36 | | malic acid | 0.46 | | succinic acid | 0.60 | [Total: 11] | The ore of aluminium is bauxite which is impure aluminium oxide. Alumina, pure aluminium oxide, is obtained from bauxite. Aluminium is formed at the cathode when a molten mixture of alumina and cryolite, Na_3AlF_6 is electrolysed. | | | |--|---|--| | (a) | Name two products formed at the anode in this electrolysis. | | | | [2] | | | (ii) | All the aluminium formed comes from the alumina not the cryolite. Suggest two reasons why the electrolyte must contain cryolite. | | | | | | | | [2] | | | (iii) | The major impurity in bauxite is $iron(III)$ oxide. $Iron(III)$ oxide is basic, aluminium oxide is amphoteric. Explain how aqueous sodium hydroxide can be used to separate them. | | | | | | | | | | | | [2] | | | | oxide, is
Aluminio
is electr
(a) | | | (b) | The | purification of bauxite uses large amounts of sodium hydroxide. | |-----|------|---| | | (i) | Describe the chemistry of how sodium hydroxide is made from concentrated aqueous sodium chloride. The description must include at least one ionic equation. | [5] | | | (ii) | Making sodium hydroxide from sodium chloride produces two other chemicals. Name these two chemicals and state one use of each chemical. | | | | chemical | | | | use | | | | chemical | | | | use[2] | | | | [Total: 13] | | | | |